The CO2 balance of unproductive aquatic ecosystems
نویسندگان
چکیده
Community respiration (R) rates are scaled as the two-thirds power of the gross primary production (P) rates of aquatic ecosystems, indicating that the role of aquatic biota as carbon dioxide sources or sinks depends on its productivity. Unproductive aquatic ecosystems support a disproportionately higher respiration rate than that of productive aquatic ecosystems, tend to be heterotrophic (R > P), and act as carbon dioxide sources. The average P required for aquatic ecosystems to become autotrophic (P > R) is over an order of magnitude greater for marshes than for the open sea. Although four-fifths of the upper ocean is expected to be net heterotrophic, this carbon demand can be balanced by the excess production over the remaining one-fifth of the ocean.
منابع مشابه
C4pp90036g 127..148 ++
Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment include: (i) enhanced UVinduced mineralisation of above ground litter due to aridification; (ii) enhanced UV-induced...
متن کاملInfluence of typhoons on annual CO2 flux from a subtropical, humic lake
The Intergovernmental Panel on Climate Change predicts dramatic changes in precipitation patterns over the next century. One potential method for inferring how these changes in annual precipitation and intensity of storm events will influence aquatic ecosystems is to study and model present-day lakes that share climatic characteristics with future climate scenarios. A small lake in north-centra...
متن کاملPatterns and controls of lotic algal stable carbon isotope ratios
Spatial and temporal variations in stable carbon isotope ratios (i.e., 813C) of primary producers are common but poorly understood features of isotopic characterizations of aquatic food webs. I investigated factors that control t13C of algae (concentration and 613C of inorganic carbon, algal fractionation, and growth rates) in riffle habitats across a gradient in stream size and productivity in...
متن کاملLimnol. Oceanogr., 44(5), 1999, 1198–1203
We used variation in algal d13C between river habitats to study the spatial scale of energy flow through river food webs. We found a strong negative relationship between herbivore d13C (which reflects algal d13C) and water velocity in three productive Northern California rivers but not in unproductive streams. The contrast among habitats suggests that water velocity affects algal d13C most stro...
متن کاملEffects of water velocity on algal carbon isotope ratios: Implications for river food web studies
We used variation in algal d13C between river habitats to study the spatial scale of energy flow through river food webs. We found a strong negative relationship between herbivore d13C (which reflects algal d13C) and water velocity in three productive Northern California rivers but not in unproductive streams. The contrast among habitats suggests that water velocity affects algal d13C most stro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 281 5374 شماره
صفحات -
تاریخ انتشار 1998